OCN 401

Global carbon cycle I

Systematics and history of the C cycle

The C cycle is dominated by the processes of: Silicate rock weathering Organic C production

The major reservoirs of C are: Carbonate rocks/sediments Organic carbon Dissolved inorganic C in seawater

 CO_2 is the transfer medium between these reservoirs

The time scales of the processes are:

Sub-annual to millenia for organic C production Thousands to millions of years for the rock cycle

Listed in order of size:	g C
Carbonate sediments	6.53 x 10 ²²
Organic matter in seds	1.25 x 10 ²²
DIC in Ocean	3.74 x 10 ¹⁹
DOC in oceans	1.00 x 10 ¹⁸
Ocean biota	3.00 x 10 ¹⁵
Carbonate sediments in the oceans are	the largest reservoi
larger than organic matter rese	rvoir by ~ 4:1
Occor water is payt largest recording	
Ocean water is next largest reservon	

Land and atmospheric reservoirs		
Listed in order of size : CaCO ₃ in soils Land biota Soil organic matter Atmosphere CO ₂	7.2 x 10 ¹⁷ 7.0 x 10 ¹⁷ 2.5 x 10 ¹⁷ 6.0 x 10 ¹⁷	
Soils are next largest reservoir Living biotic reservoir is Dead organic matter is 1/ Phytomass ~100 x bacter Atmosphere is the smalle living biomass	~same as inorganic reservoir 3 of the inorganic reservoir ia and animal reservoirs est reservoir, similar to size of all	

Photosynthesis and respiration

 $\mathrm{CO}_2 + 2\mathrm{H}_2\mathrm{O} = \mathrm{CH}_2\mathrm{O} + \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$

Photosynthesis proceeds to the right, releases oxygen to the atmosphere Respiration proceeds to the left, consumes oxygen from the atmosphere

Both of these reactions proceed rapidly on annual cycles

Reactions linking carbon and oxygen

$$C + O_2 = CO_2$$

Under conditions at Earth's surface this reaction proceeds to the right, Thermodynamics favours $CO_2 C$ and O_2 --lots of Gibbs free energy But kinetics are slow, activation energy is needed to promote the reaction The oxidation of carbon is what is happening during the burning of fossil fuels or forest fires

Carbonate and silicate rock cycleWeathering on land $CaCO_3 + CO_2 + H_2O = Ca^{2+} + 2HCO_3^ CaSiO_3 + 2CO_2 + 3H_2O = Ca^{2+} + 2HCO_3^- + H_4SIO_4$ Uptake of atmospheric CO_2 during weathering on land, delivery ofdissolved form to oceansDeposition in the oceans $Ca^{2+} + 2HCO_3^- = CaCO_3 + CO_2 + H_2O$ $H_4SiO_4 = SiO_2 + 2H_2O$ Release of CO_2 during carbonate precipitationMetamorphic reactions $CaCO_3 + SiO_2 = CaSiO_3 + CO_2$ Release of CO_2 return to atmosphere via volcanic/hydrothermal activity

 $CaCO_3$ weathering on land and reprecipitation in ocean has no net effect on atmospheric CO_2

Weathering of silicates on land and reprecipitation in ocean results in net uptake of atmospheric CO_2

Balance of weathering types affects atmospheric CO₂

Subduction of sediments and volcanic activity returns CO2 to atmosphere

If no recycling, weathering would remove all CO_2 from atmosphere in ~ 1 million years

Residence time of CO_2 in atmosphere relative to weathering and volcanic input is ~ 6,000 years, i.e. is a long term control

Does not control decadal to century scale changes seen in modern C cycle

